Copied to
clipboard

G = C42.396D4order 128 = 27

29th non-split extension by C42 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.396D4, C4.4(C4.10D4), C22.11(C8○D4), C22⋊C8.126C22, C42.6C4.14C2, C23.171(C22×C4), (C2×C42).152C22, (C22×C4).434C23, C42.12C4.14C2, C2.10(C23.C23), C22.M4(2).11C2, (C2×C4⋊C4).12C4, (C2×C4).1131(C2×D4), (C2×C4⋊C4).10C22, (C22×C4).11(C2×C4), C2.7(C2×C4.10D4), (C2×C42.C2).1C2, (C2×C4).164(C22⋊C4), C2.8((C22×C8)⋊C2), C22.152(C2×C22⋊C4), SmallGroup(128,202)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.396D4
C1C2C22C2×C4C22×C4C2×C42C2×C42.C2 — C42.396D4
C1C2C23 — C42.396D4
C1C22C2×C42 — C42.396D4
C1C2C22C22×C4 — C42.396D4

Generators and relations for C42.396D4
 G = < a,b,c,d | a4=b4=1, c4=b2, d2=b, ab=ba, cac-1=ab2, ad=da, cbc-1=a2b, bd=db, dcd-1=a2b-1c3 >

Subgroups: 180 in 102 conjugacy classes, 46 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C23, C42, C4⋊C4, C2×C8, C22×C4, C22×C4, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C42.C2, C22.M4(2), C42.12C4, C42.6C4, C2×C42.C2, C42.396D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4.10D4, C2×C22⋊C4, C8○D4, (C22×C8)⋊C2, C23.C23, C2×C4.10D4, C42.396D4

Smallest permutation representation of C42.396D4
On 64 points
Generators in S64
(1 19 63 55)(2 24 64 52)(3 21 57 49)(4 18 58 54)(5 23 59 51)(6 20 60 56)(7 17 61 53)(8 22 62 50)(9 45 30 36)(10 42 31 33)(11 47 32 38)(12 44 25 35)(13 41 26 40)(14 46 27 37)(15 43 28 34)(16 48 29 39)
(1 57 5 61)(2 4 6 8)(3 59 7 63)(9 32 13 28)(10 12 14 16)(11 26 15 30)(17 55 21 51)(18 20 22 24)(19 49 23 53)(25 27 29 31)(33 35 37 39)(34 45 38 41)(36 47 40 43)(42 44 46 48)(50 52 54 56)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 39 57 33 5 35 61 37)(2 40 4 43 6 36 8 47)(3 42 59 44 7 46 63 48)(9 22 32 24 13 18 28 20)(10 23 12 53 14 19 16 49)(11 52 26 54 15 56 30 50)(17 27 55 29 21 31 51 25)(34 60 45 62 38 64 41 58)

G:=sub<Sym(64)| (1,19,63,55)(2,24,64,52)(3,21,57,49)(4,18,58,54)(5,23,59,51)(6,20,60,56)(7,17,61,53)(8,22,62,50)(9,45,30,36)(10,42,31,33)(11,47,32,38)(12,44,25,35)(13,41,26,40)(14,46,27,37)(15,43,28,34)(16,48,29,39), (1,57,5,61)(2,4,6,8)(3,59,7,63)(9,32,13,28)(10,12,14,16)(11,26,15,30)(17,55,21,51)(18,20,22,24)(19,49,23,53)(25,27,29,31)(33,35,37,39)(34,45,38,41)(36,47,40,43)(42,44,46,48)(50,52,54,56)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,39,57,33,5,35,61,37)(2,40,4,43,6,36,8,47)(3,42,59,44,7,46,63,48)(9,22,32,24,13,18,28,20)(10,23,12,53,14,19,16,49)(11,52,26,54,15,56,30,50)(17,27,55,29,21,31,51,25)(34,60,45,62,38,64,41,58)>;

G:=Group( (1,19,63,55)(2,24,64,52)(3,21,57,49)(4,18,58,54)(5,23,59,51)(6,20,60,56)(7,17,61,53)(8,22,62,50)(9,45,30,36)(10,42,31,33)(11,47,32,38)(12,44,25,35)(13,41,26,40)(14,46,27,37)(15,43,28,34)(16,48,29,39), (1,57,5,61)(2,4,6,8)(3,59,7,63)(9,32,13,28)(10,12,14,16)(11,26,15,30)(17,55,21,51)(18,20,22,24)(19,49,23,53)(25,27,29,31)(33,35,37,39)(34,45,38,41)(36,47,40,43)(42,44,46,48)(50,52,54,56)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,39,57,33,5,35,61,37)(2,40,4,43,6,36,8,47)(3,42,59,44,7,46,63,48)(9,22,32,24,13,18,28,20)(10,23,12,53,14,19,16,49)(11,52,26,54,15,56,30,50)(17,27,55,29,21,31,51,25)(34,60,45,62,38,64,41,58) );

G=PermutationGroup([[(1,19,63,55),(2,24,64,52),(3,21,57,49),(4,18,58,54),(5,23,59,51),(6,20,60,56),(7,17,61,53),(8,22,62,50),(9,45,30,36),(10,42,31,33),(11,47,32,38),(12,44,25,35),(13,41,26,40),(14,46,27,37),(15,43,28,34),(16,48,29,39)], [(1,57,5,61),(2,4,6,8),(3,59,7,63),(9,32,13,28),(10,12,14,16),(11,26,15,30),(17,55,21,51),(18,20,22,24),(19,49,23,53),(25,27,29,31),(33,35,37,39),(34,45,38,41),(36,47,40,43),(42,44,46,48),(50,52,54,56),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,39,57,33,5,35,61,37),(2,40,4,43,6,36,8,47),(3,42,59,44,7,46,63,48),(9,22,32,24,13,18,28,20),(10,23,12,53,14,19,16,49),(11,52,26,54,15,56,30,50),(17,27,55,29,21,31,51,25),(34,60,45,62,38,64,41,58)]])

32 conjugacy classes

class 1 2A2B2C2D2E4A···4H4I4J4K4L4M4N8A···8H8I8J8K8L
order1222224···44444448···88888
size1111222···24488884···48888

32 irreducible representations

dim1111112244
type++++++-
imageC1C2C2C2C2C4D4C8○D4C4.10D4C23.C23
kernelC42.396D4C22.M4(2)C42.12C4C42.6C4C2×C42.C2C2×C4⋊C4C42C22C4C2
# reps1411184822

Matrix representation of C42.396D4 in GL6(𝔽17)

1340000
940000
0011500
0011600
0001601
00116160
,
1300000
0130000
0011500
0011600
0001601
00116160
,
13120000
1640000
0090214
00160118
00101617
0001017
,
2150000
4150000
0010150
0000161
0001160
0010160

G:=sub<GL(6,GF(17))| [13,9,0,0,0,0,4,4,0,0,0,0,0,0,1,1,0,1,0,0,15,16,16,16,0,0,0,0,0,16,0,0,0,0,1,0],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,1,1,0,1,0,0,15,16,16,16,0,0,0,0,0,16,0,0,0,0,1,0],[13,16,0,0,0,0,12,4,0,0,0,0,0,0,9,16,10,0,0,0,0,0,16,10,0,0,2,11,1,1,0,0,14,8,7,7],[2,4,0,0,0,0,15,15,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,15,16,16,16,0,0,0,1,0,0] >;

C42.396D4 in GAP, Magma, Sage, TeX

C_4^2._{396}D_4
% in TeX

G:=Group("C4^2.396D4");
// GroupNames label

G:=SmallGroup(128,202);
// by ID

G=gap.SmallGroup(128,202);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,232,723,184,1123,851,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b,a*b=b*a,c*a*c^-1=a*b^2,a*d=d*a,c*b*c^-1=a^2*b,b*d=d*b,d*c*d^-1=a^2*b^-1*c^3>;
// generators/relations

׿
×
𝔽